本文共 2276 字,大约阅读时间需要 7 分钟。
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 , Ultra-QuickSort produces the output 0 1 4 5 9 . Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence. Input The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed. Output For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence. Sample Input 5 9 1 0 5 4 3 1 2 3 0 Sample Output 6 0 题意就是输入一个n,接着输入n个数,然后求出这n个数的逆序数。最简单的求逆序数就是用冒泡排序,每次比较,如果交换说明整两个数是逆序的,ans++,也就是说冒泡排序交换次数就是逆序数;但是时间复杂度是O(n^2).
再就是可以用归并排序来求逆序数,隐隐约约记得之前做过一道题是可以的来求的,虽然现在忘了啊。 这里用树状数组来求。先说离散化
如果数据量少,但是数据范围大,那么开数组的话会浪费很大一部分空间,所以需要离散化处理(通俗点就是把离散较大的数据紧凑起来)for (int i=1; i<=n; i++){ scanf("%d", &init[i].val); init[i].order=i;}sort(init+1, init+n+1, cmp);for (int i=1; i<=n; i++) a[init[i].order]=i;
这样最后a数组的下标就是原来数据的元素的order位置,值就是被处理后的值。从而做到把离散的数据紧凑起来,节省空间。
这样就是把9 1 0 5 4变成5 2 1 4 3 再说求逆序数 这里用树状数组来求,就是每个元素的前面比它大的数量的和就是最终的逆序数。在说明一点,i-sum(a[i])是本来一共有i个数,sum(a[i])是所有小于等于a[i]的个数,相减就是大于a[i]的个数,也就是在新的数前面大于它的元素的个数。
#include#include #include #include using namespace std;int n;int a[500005];int c[500005];struct node{ int order; int val;}init[500005];int cmp(node a, node b){ return a.val =1){ ans+=c[index]; index-=lowbit(index); } return ans;}int main(){ while (scanf("%d", &n) && n){ for (int i=1; i<=n; i++){ scanf("%d", &init[i].val); init[i].order=i; } sort(init+1, init+n+1, cmp); for (int i=1; i<=n; i++) a[init[i].order]=i; memset(c, 0, sizeof(c)); long long ans=0; for (int i=1; i<=n; i++){ update(a[i], 1); ans+=(i-sum(a[i])); } printf("%lld\n", ans); } return 0;}
转载地址:http://zvnh.baihongyu.com/